If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2e^2-8e=0
a = 2; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*2}=\frac{0}{4} =0 $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*2}=\frac{16}{4} =4 $
| 2x^2-8x+15=7.5 | | 160/a=0.1 | | 34+5(n+1)=4 | | 3672/(9x-6)=36 | | (1/6)x+4=(1/3)(x-3)-1.5x | | (x+3)^2-7(x+3)=0 | | 20=2-6n | | x+1/2x-7=2x-7/x+1 | | X^2-9+4x=0 | | 4.5x-11.25x^2=0 | | (-8m)-2=-10 | | 5x=1/128 | | (D^2+3D+2)y=0 | | -3/2=8/27=x | | 0=x^2-15x-25 | | 16a+14a-3=38 | | 9a3=9 | | 4x(x+6)=38 | | -7t^2+t-2=0 | | (x-3)^2=13 | | 6+a/2=a+4 | | (7x+1)^2=36 | | 6x^2+3x-13=0 | | x/2-5=(x-2)^2-9 | | 2^x+4^x=2 | | 5/(x+2)=0 | | 26x+10=0 | | 5x/6-17=3 | | 7⋅(x−4)=5⋅(x−2) | | x/2=(x-2)^2-9 | | (3^x)*(4^x)=1 | | 3(2+a)=4 |